Receiver sensitivity testing

Posted in Applications

Production line testing for a GNSS system can present some unique challenges. With most radio receivers manufacturing faults have a clear and easily detectable impact on the system performance, for a GNSS receiver the high sensitivity of the system can make these faults hard to detect. If the test process isn’t carefully tuned a receiver can appear to be functioning correctly even in the presence of significant manufacturing defects such as unsoldered joints or even missing components.

While the low cost and easily scripted remote control makes a LabSat the perfect tool for production line testing it is critical that the test environment be correctly configured in order to create a reliable and consistent test. Due to wide range of products and applications which incorporate a GNSS system there is no one set of rules as to how to test the receiver, this application note details a test process that will work for most devices however minor changes may be required for some products.

For design validation testing the ability of the LabSat to replay live sky recordings is invaluable however once the design has been validated a more controlled signal is beneficial for production testing. By utilizing the SatGen software it is possible to generate an artificial scenario in which all the signals are uniform and consistent, this allows a far more consistent and repeatable test process that would be possible with real signals.

It is also vital that the physical test setup be consistent, depending on the equipment and cabling used it is possible create significant differences in signal strengths by moving the device under test or the LabSat. For this reason it is recommended that the LabSat be fixed in place, that some form of stand or fixture be created for the product under test in order to ensure consistent placement, that the RF cables used are of high quality, and that any excess cable be secured such that it cannot move significantly between tests.

The simplest possible form of testing, does the system work or not at a specific signal level has a significant problem; the weakest signal that can be tracked is often below the level that can be initially acquired creating a need to dynamically change signal levels during the test. While possible this introduces additional variables and complexity to the test process. Testing for the weakest signal that can be acquired is also possible but would be time consuming since acquisition at very low levels can take a significant time.

Instead it is best to look at the reported signal to noise ratio for tracked satellites, this allows the system to operate under more normal conditions and allows for a relatively fast and simple test. Unfortunately the SNR reported by a GNSS receiver will generally not vary linearly with the incoming signal power and can saturate at relatively low signal strengths. In order to produce a reliable test that can differentiate between a good receiver and one with poor sensitivity the signal levels must first be adjusted to the point where a clear difference can be seen between the two.

The simplest and most reliable method of calibrating the test environment is to use a known good unit identical to the product under test. This known good unit is used to determine a low but realistic signal level to deliver to the unit under test thus ensuring that the system is operating in its normal range and not masking any issues due to excess input power.

Conducted testing for devices with antenna connectors

The LabSat 3 contains a variable attenuator that can be set in 1dB steps from 0 to 31dB, however, even with this at maximum the LabSat output can still be significantly higher power than is needed for devices with a wired antenna connection. By adding additional fixed value external attenuators the signal level can be reduced to the point that the LabSats internal attenuation can then be used to fine tune the signal strength. The exact amount of additional attenuation required will depend on the product and test setup in question but will generally be in the order of 40dB.

In order to minimize the risk of crosstalk between RF cables these attenuators should be placed as close as possible to the LabSat output connector.

Due to the sensitivity of some GPS receivers it is also recommended that the device under test be placed at least 1 meter away from the LabSat or the two devices be shielded from each other in some way.

Receiver sensitivity testing Fig1 Basic wired test setupFig. 1: Basic Wired Test Setup

Test Creation and Configuration

In order to calibrate the test fixture two variables must be found, the required LabSat attenuation and the SNR levels expected from the equipment under test. Both of these values can be found by using the following procedure:

  • Use SatGen to create a static scenario with 8 GPS satellites at 51dB.
  • Place a known good example of the end product in the test fixture and play the scenario from the LabSat.
  • Monitor the SNRs reported by the unit with the LabSat set to 0dB of attenuation.
  • Wait for the equipment to track all 8 SVs, they should have the same SNR +/-1dB and the reported SNRs should be stable. If this does not happen decrease the external attenuation by 20dB and try again.
  • Slowly increase the LabSat internal attenuation until any of the following events happen: The equipment under test loses lock, the differences in SNR between satellites starts to increase, or the SNRs start to vary by more than +/- 1dB over time. These are all indications that the equipment is having trouble tracking the signals and so the minimum reliable signal strength has been found.
  • Once this point is located decrease the LabSat internal attenuation by 10dB, if the internal attenuation is under 10dB decrease the external attenuation by 15dB and return to step 3.
  • This reduced attenuation setting will be the signal level used for testing. Note the SNR levels reported by the user equipment, these will determine the test pass criteria.

By following this process the signal levels reaching the equipment under test will be within a range where variation in receiver sensitivity will have the maximum possible impact on reported signal levels.

Test process

To test a device place it in the test fixture and replay the same LabSat scenario.

Wait until the device has acquired a stable GPS position fix, if this takes over 2 minutes then the device may well be faulty.

Record the reported SNR values and compare them to the values received from a known good unit. There will be unit to unit variation in the reported signal levels, how great this variation is will depend on both the consistency of the test environment and natural product variation however as a rough guide any unit reporting SNRs 3dB or more below the known good unit should be considered suspect.

Test maintenance

It is good practice to verify the test set up are regular intervals or if any changes are made to it no matter how minor. This is done by testing a known good unit and ensuring that it reports the expected results.

Many RF connectors are only rated for a few hundred connect/disconnect cycles. Depending on the planned volumes it may be prudent to design the fixture such that the connection to the equipment under test can easily be replaced should it become worn.

Radiated testing for devices with internal antennas

Testing devices with internal antennas is also possible but adds some additional challenges.  

In order to be meaningful production testing must use very weak signals which introduces the risk of confusion between the test signals and the live GPS signals. This combined with very strict legal restrictions on broadcasting within the GPS frequency band mean that any radiated testing must be carried out within a shielded enclosure.

The small separations between the transmitter and receiver imposed by the use of a chamber in turn means that very small differences in device position or environment can have a significant impact on measured signal strength.

In order to produce a reliable and consistent test it is critical that the device under test be consistently located, that the separation between the antennas is maximized (this reduces the sensitivity to placement variation) and that any connected cables be as short as possible and routed consistently between tests so as to minimize the risk of cable placement influencing the test results. If possible devices should operate without any cables connected.

It is also critical that the RF chamber be closed and sealed for the duration of the test. If user interaction is required for example to press buttons or read results then these actions must be performed before or after the test.

Receiver sensitivity testing Fig.2 Reradiated test setupFig. 2: Reradiated Test Setup

Other than the extra care required in ensuring the test environment is consistent the overall test structure is the same as detailed above for a wired configuration. Due to the losses involved in re-radiating the GNSS signals the need for additional attenuation may well be eliminated however this will be highly dependent upon the final physical test configuration and the sensitivity of the equipment being tested. In some situations an external amplifier may be required to boost the signal levels, if this is the case then a low noise amplifier with a pass band that includes 1575MHz should be used such as the Mini Circuits ZFL-1000LN+

Testing multiple devices at once

It is possible to test multiple devices at once with a single LabSat however this does introduce two additional complexities.

Firstly either the tests must be synchronized such that they all start at the same time as the LabSat scenario or if each test station runs independently the scenario must be set to loop continuously. If using a looping scenario care must be taken to ensure that a device is not being tested when the scenario restarts, if this does happen the device under test must be cold started and the test started again.

The second complexity is ensuring that the signal levels are consistent between all the devices being tested. While not technically required failing to do this would result in different pass/fail criteria for each test station which would in turn greatly increase the risk of operator errors during testing.

Receiver sensitivity testing Fig.3 Multi device test setupFig. 3: Multi-device Test Setup

The simplest way to achieve equal signal strengths is to ensure that all cables after the RF splitter are of equal length and identical construction, while this may still result in some minor variations in signal strength they should be small enough to not have any significant impact on the overall test reliability. If for some reason this is not possible then it may be necessary to increase the power going in to the RF splitter by reducing the attenuator connected directly to the LabSat output by ~5dB and then add additional small attenuators to each cable after the splitter until all test stations give the same results.

The RF splitter and additional connectors and cabling required in a multi-station test environment will result in a reduced signal strength at each test station, e.g., an ideal 4 way splitter will add 6dB of loss, the extra cables and connections involved will normally add 1 or 2 dB more giving a total signal reduction of ~8dB. In order to compensate for this the signal levels from the LabSat should be increased by approximately the same amount, i.e., for a conducted test setup the 40dB attenuator is reduced to somewhere between 30 and 35dB for a 4 way split. For radiated testing in which there is often no external attenuator to reduce this may require additional signal amplification.

Customer Example

Engineers at HuaXun Technology use LabSat to test the sensitivity of their GNSS chipsets because of its ability to use realistic scenarios from every part of the globe.

“The variety of scenarios give us a complete solution. We don’t have to travel half way round the world to be able to test there, just like we don’t have to actually use a sports car (with the added cost for both car and fuel) to do pilot testing with high dynamics - it only needs recording once and then we can use it as often as we like ... "

Liang Rong Zhou, Test Engineer

Read the full case study here.